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We analyze the synchronization dynamics of phase oscillators far from the synchronization manifold, in-
cluding the onset of synchronization on scale-free networks with low and high clustering coefficients. We use
normal coordinates and corresponding time-averaged velocities derived from the Laplacian matrix, which
reflects the network’s topology. In terms of these coordinates, synchronization manifests itself as a contraction
of the dynamics onto progressively lower-dimensional submanifolds of phase space spanned by Laplacian
eigenvectors with lower eigenvalues. Differences between high and low clustering networks can be correlated
with features of the Laplacian spectrum. For example, the inhibition of full synchoronization at high clustering
is associated with a group of low-lying modes that fail to lock even at strong coupling, while the advanced
partial synchronization at low coupling noted elsewhere is associated with high-eigenvalue modes.
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The relation between structure and function is a key area
in the study of complex networks �1–4�. Synchronization of
coupled oscillators �5� has applications to numerous areas of
biology including neuroscience, as well as systems such as
coupled lasers and Josephson junctions, and accordingly its
dependence on coupling topology has begun to receive atten-
tion. Among methods of studying synchronization, the mas-
ter stability function �MSF� �6� formalism is appealing be-
cause it expresses the dynamical synchronizability in terms
of purely structural features, independent of details of node
dynamics. The so-called propensity for synchronization �an
indication of the size of the parameter range giving a stable
synchronized state� �7� depends only on the extremal eigen-
values of the Laplacian matrix. Within this formalism, the
effects of small-world properties, heterogeneity, and certain
types of weighted coupling have been examined �8,7�. The
MSF, however, is restricted to the linear domain, close to
exact amplitude and phase synchronization of chaotic oscil-
lators. Others �9–13� have examined numerically and ana-
lytically the onset of synchronization for phase oscillators
coupled on networks, a problem for which the MSF is un-
suited.

In this Brief Report we demonstrate an application of the
Laplacian spectrum to a sparsely connected network Kura-
moto �14� model both close to and far from full synchroni-
zation. As a case study, we examine scale-free networks with
low and high clustering coefficients, examined elsewhere by
different methods �12�. Parametrizing the phase space with
normal coordinates based on Laplacian eigenvectors, we
show in these two sample cases that with increasing coupling
strength, the dynamics contracts onto progressively lower-
dimensional subspaces spanned by lower-lying �less stable�
eigenvectors. Dynamical properties of the networks can be
correlated with specific features of their spectra. By focusing
on appropriately chosen collective degrees of freedom �the
normal coordinates�, our approach complements methods of
analysis that focus on the locking and unlocking of indi-
vidual oscillators �14,12�. In the spirit of the MSF, our analy-
sis highlights the effects of network topology via the spec-
trum, but in contrast it applies to a range of desynchronized
and partly synchronized states, not only to incipient devia-

tions from full synchronization. We consider the spectrum in
its entirety, not only the extremal eigenvalues. The coordi-
nates derived from the Laplacian spectrum provide a helpful
empirical tool for the analysis of simulation results. We use
them here to gain new insight into the different behaviors of
networks with high and low clustering coefficients. Our em-
phasis is on the process of synchronization, rather than on
rigorous bounds for the threshold of desynchronization.

We first define the model and show how the Laplacian
and its spectrum appear naturally in a linearized description
of the frequency-synchronized state. Then we use the La-
placian eigenvectors to parametrize the partially desynchro-
nized states and show that this coordinate system remains
useful well beyond the range of validity of the linearization.

Our model �9,10� is defined by the coupled equations

d�i

dt
= �i +

�

�k��j

aij sin��i − � j� , �1�

where �i are N phase variables �one associated with each
node of a network�, −1��i�1 are the randomly and uni-
formly distributed intrinsic frequencies,1 � is the overall cou-
pling strength, and aij is the weighting matrix of the indi-
vidual couplings. In our examples, all links are weighted
equally, and aij is simply the adjacency matrix �aij =1 if i and
j are connected, 0 otherwise�. As in �10,12� the coupling
strength is normalized by the average degree �k� of all
nodes.2 At low coupling strength, each oscillator moves in-
dependently at its intrinsic frequency, but as the coupling
increases some become mutually entrained. At sufficiently
strong coupling, all oscillators rotate at the same frequency,
d�i

dt = �̄=0. For the original, fully connected model the
steady-state phases depend only on the intrinsic frequencies

1The average of �i can be taken to be �̄=0 without loss of gen-
erality �if it is not zero it can be made so by changing variables into
a rotating frame of reference�.

2By normalizing the average total input to a unit this convention
facilitates comparisons among networks and corresponds to the nor-
malization by N in the original fully connected Kuramoto model.
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�i: those with higher frequencies lead the ensemble while
those with lower frequencies lag. In the present sparsely con-
nected version, on the other hand, each oscillator is influ-
enced differently by its local neighborhood. If the phase dif-
ferences are small then the sine coupling function can be
approximated linearly and the equations of motion become

d�i

dt
= �i +

�

�k��j

aij��i − � j� = �i −
�

�k��j

£ij� j �2�

where

£ij = aij − �ij�
k

aik = aij − �ijki �3�

is the Laplacian matrix. The degree ki of the ith node is
defined as the number of nodes to which it is connected, and
the second equation in Eq. �3� thus holds if the couplings are
equally weighted.

The steady-state �frequency locked� phases can be found
by diagonalizing the Laplacian. Let its normalized eigenvec-
tors and corresponding eigenvalues be v� and ��, where 1
���N. Enumerating lattice sites by Latin indices and La-
placian eigenvectors by Greek ones, we define projections of
the phase and frequency vectors onto these eigenvectors by

�� � �
i

�ivi
�, �� � �

i

�ivi
�, �4�

which allows the equations of motion �2� to be rewritten as

d��

dt
= �� −

�

�k�
����. �5�

The steady state values �� of the normal coordinates are
given by

�� =
�k�
�����. �6�

Relaxation to this equilibrium obeys

dx�

dt
= −

���

�k�
x�, �7�

where x�=��−�� is the displacement from equilibrium
along the �th normal coordinate. The equilibrium is stable
provided all ���0 and the phase displacements are small
enough for the linear approximation to hold. By the defini-
tion �3�, the row sum � j£ij of the Laplacian is zero for all
rows and therefore �1,1,…1� is always an eigenvector with
eigenvalue 0, but for a connected network, all other eigen-
values are positive �15�. Therefore the frequency synchro-
nized state is neutrally stable against a uniform shift of all
phases, but stable against all other perturbations. The stabil-
ity breaks down only due to nonlinear effects: the slope of
the sinusoidal coupling function decreases with increasing
phase differences and eventually ceases to provide sufficient
restoring force. Since the phase displacements are largest
along the eigenvectors with lowest ��, these eigenvectors
represent modes along which frequency synchronization first
fails as the coupling decreases.

Although they arise most naturally from the linear analy-
sis, the Laplacian eigenvectors retain their usefulness beyond
that approximation. To demonstrate this, we consider two
networks as examples. Our two networks have identical,
scale-free, degree distributions but differ in their clustering
coefficient �3,16�—a measure of the likelihood that two
neighbors of a given node are also directly connected to each
other, or a measure of the prevalence of triangles in the net-
work topology. The first is a Barabasi-Albert �17� scale-free
network of N=1000 nodes with average degree �k�=20,
grown by means of preferential attachment beginning with a
fully connected core of m=10 nodes. The Barabasi-Albert
network has a low clustering coefficient, approximately 0.02.
The other network is derived from the first by applying
Kim’s �18� stochastic rewiring method to increase the clus-
tering coefficient to 0.62, without changing the degree distri-
bution �although, as mentioned below, some other properties
vary in tandem with the clustering�. We will refer to these
networks as the normal scale-free network �NSFN� and the
clustered scale-free network �CSFN�, respectively. These
were among the networks studied previously in �12�, where
it was found that increased clustering inhibited full synchro-
nization at high � but surprisingly promoted the onset of
partial synchronization at low �. This behavior is shown in a
plot �Fig. 1� of the standard synchronization order parameter

r = 	
�
j

ei�j
�
T

�8�

�where �¯�T stands for a time average� as a function of the
coupling strength. In the unsynchronized state at low cou-

FIG. 1. �Color online� Synchronization order parameter as a
function of coupling strength for the two scale-free networks. The
strongly clustered network �CSFN� undergoes a partial synchroni-
zation at lower coupling strength, but at higher couplings it is sig-
nificantly less synchronized than the normal �NSFN� network.
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pling, r=O�1/�N� from both networks. The onset of syn-
chronization is shown by an upward turn in the plot of r vs
�. This transition occurs at a lower � for the CSFN than for
the NSFN, so that for 0.25	�	0.75, r is larger for the
CSFN. At higher couplings, however, the CSFN strongly re-
sists full synchronization and remains in a partly synchro-
nized state with a much smaller value of r than for the
NSFN.

The Laplacian eigenvalue spectra of the NSFN and CSFN
are shown in Fig. 2. Like the degree distribution, the distri-
bution of eigenvalues has a power-law tail in both cases. An
important difference appears at the lower end of the spec-
trum. In the NSFN, there is a gap between the lowest non-
zero eigenvalue and zero, and the single peak of the distri-
bution is near this lower cutoff. The CSFN spectrum, on the
other hand, has a second peak close to zero, indicating a
number of nearly degenerate quasizero modes. The presence
of eigenvalues close to zero indicates that the network has a
strong community structure �20�, i.e., it consists of compo-
nents �communities� that have fewer connections between
different components than within each component. In fact,
the low eigenvectors of the Laplacian form the basis of some
algorithms for detecting communities �19,20�. From the
spectrum, then, we learn that the rewiring algorithm has not
only created clustering �a local property measuring the num-
ber of triangles� but as a byproduct has also created global
communities. Since higher clustering means more “local”
connections at the expense of long-range ones, this is not
surprising, but neither is it inevitable—for example, a regular
ring or a “small-world” network of the type considered in
�16� has high clustering but no communities.

To further aid in analyzing the dynamics we define the
observed frequencies �rotation numbers� of the oscillators as
the time averages


 j = 	 d� j

dt
�

T
. �9�

Projecting the vector of observed frequencies onto the La-
placian eigenbasis gives a time-averaged velocity along the
direction defined by each eigenvector:


� = �
j


 jv j
�. �10�

In a fully frequency-synchronized state, 
�=0 for all �.
In Fig. 3 ensemble averages of the squares of the velocities
��
��2�� are plotted against the eigenvalues �� for both net-
works at three values of the coupling strength. The average
�¯�� is over 25 different realizations of the random fre-
quency distribution. In a case where the network is almost
completely incoherent �for example, the NSFN at �=0.5�, all

FIG. 3. �Color online� Mean-square projections of observed fre-
quency differences onto Laplacian eigenvectors �normal velocities�
at several values of coupling strength �. Each point represents an
average over 25 realizations of the random intrinsic frequencies. In
both types of networks, velocities along the eigenvectors with
higher eigenvalues vanish at lower couplings than those with lower
eigenvalues. In the highly clustered network �right column�, two
features are notable: The higher mode velocities vanish more
readily than for the low-clustering network, and the lowest lying
modes maintain nonzero velocities even at �=2.5 where all others
vanish.

FIG. 2. �Color online� Histograms of the scaled Laplacian ei-
genvalues �� / �k� for the NSFN �a� and CSFN �b�. Both histograms
have power-law tails at large eigenvalues. A key difference is the
group of low-lying modes, separate from the main spectrum, in the
highly clustered network.
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velocities 
� are random and of approximately equal mag-
nitude. In the case of full synchronization �NSFN at �=2.5�,
all velocities are “locked” at zero. At intermediate values af
�, however, some modes are locked while others are “drift-
ing” at nonzero velocities. It is clear from the plots that as
the coupling increases, modes with higher eigenvalues lock
sooner than those with lower ones—synchronization pro-
ceeds from the top of the spectrum downward. Synchroniza-
tion manifests itself as a progressive contraction of the dy-
namics onto lower-dimensional submanifolds of the phase
space.

In the case of the CSFN, higher modes begin to lock more
readily than in the NSFN, indicating that these high modes in
the spectrum are implicated in the advanced partial synchro-
nization of the clustered network �Fig. 1�. At stronger cou-
pling, on the other hand, the most notable difference of the
clustered from the normal network is that the low-lying
modes associated with community divisions �Fig. 2� con-
tinue to drift while all others are locked. The lack of syn-
chronization is associated with these low-lying modes, and
the frequency clusters noted in this case �12� coincide with
topological communities. The observation that these low-
lying modes fail to lock is consistent with our intuition based
on the linear approximation, according to which these modes
represent the strongest potential instabilities of a synchro-
nized state. Their presence in the spectrum accounts for the
inhibition of full synchronization in the CSFN. The finding
that different sets of eigenvectors are involved in the two
regimes supports the claim �13� that two separate effects are
at work, with the advanced onset being an effect of the clus-
tering per se, which is a local property, while the delay of
full synchronization results from global topological proper-
ties that are correlated with clustering. In particular, the delay

was ascribed to effects of increasing average path length
�13�. However, the involvement of the low eigenvectors as-
sociated with communities and the dymanical fragmentation
of the network into synchronized subgroups suggest that it is
more specifically a function of the community structure �al-
though the latter certainly is correlated with a long average
path length�. Ongoing studies aim to further disentangle the
various correlated topological features and their effects.

Examining the dynamics in terms of normal coordinates
defined by the Laplacian eigenvectors provides a geometric
basis for viewing the flow of the ensemble of oscillators that
complements other tools of analysis such as global order
parameters �14� or scatter plots of observed vs intrinsic fre-
quencies of individual oscillators �12�. Like the MSF formal-
ism, it gives a partial picture of how purely structural fea-
tures influence the synchronization dynamics, since the
Laplacian reflects only the network topology. It is not obvi-
ous a priori that Laplacian eigenvectors should be relevant
beyond the range of validity of the linear approximation near
a fully phase-synchronized state, yet the normal coordinate
velocities, in particular, contain nontrivial dynamical infor-
mation well away from this limit, and they split into subsets
associated with different dynamical effect. They allow one to
indentify collective degrees of freedom responsible for on
one hand the advanced partial synchronization and on the
other the inhibition of complete synchronization in a highly
clustered scale-free network. Connections among topology,
spectrum, and dynamics will be explored more fully in a
future publication, which will apply the formalism to other
types of networks including ones with unequal and asymmet-
ric couplings aij, as well as considering other spectral prop-
erties such as the localization and delocalization of modes.
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